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We consider a set of Hamiltonian circuits filling a Manha t t an  lattice, i.e., a 
square lattice with alternating traffic regulation. We show that the generating 
function (with fugacity z) of this set is identical to the critical partition function 
of a q-state Potts  model on an unoriented square lattice with qm = z. The set of 
critical exponents governing correlations of Hamil tonian circuits is derived 
using a Coulomb gas technique. These exponents are also found to be those of 
an O(n) vector model in the low-temperature phase with n = q m = z .  The 
critical exponents in the limit z = 0 are then those of spanning trees (q = 0) and 
of dense polymers ( n = 0 ,  T <  T,,), corresponding to a conformal theory with 
central charge C = - 2 .  This shows that the Manha t t an  orientation and the 
Hamiltonian constraint of filling all the lattice are irrelevant for the infrared 
critical properties of Hamiltonian walks. 

KEY WORDS:  Manhat tan ,  Hamiltonian walk; critical exponents; Potts; 
O(n); SOS; Coulomb gas; conformal invariance; surface exponents. 

1. I N T R O D U C T I O N  

A Hamiltonian walk is a self-avoiding walk that visits each site of a given 
lattice, thus filling completely the available space. A famous solution by 
Kasteleyn (~) gives the exact number of such Hamiltonian walks on any 
oriented lattice that is the covering graph of another oriented lattice, the 
enumeration reducing then to counting spanning trees of the underlying 
lattice, which in turn is obtained by evaluating a determinant. (1) A 
particular case of such a covering lattice is the Manhattan oriented square 
lattice, where successive horizontal (and vertical) lines are oriented in 
alternating directions. (1,2) The general counting of Hamiltonian walks on 
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any lattice is not yet known (see Ref. 3 for a general discussion). The deter- 
mination of the effective connectivity constant for Hamiltonian walks, in 
particular, has been the subject of recent research. ~3-6) 

Obviously, Hamiltonian walk problems have connections with the 
statistics of polymer melts or collapsed polymers. (7'8) Recently, progress has 
been made (9-11~ for dense polymers in two dimensions, which are described 
by the low-temperature phase of the O(n) n-vector model, in the limit n -- 0. 
By use of results of a standard Coulomb gas mapping, (12'13) an infinite 
series of exact critical exponents has been derived, (9~ which can be used for 
enumerating the configurations of any dense, branched polymer with a 
specified topology. (14'9"H) These dense polymers occupy only a finite frac- 
tion of the lattice and are not Hamiltonian walks. However, one notes, (9,m) 
using the result of Kasteleyn, ~1~ that Hamiltonian walks on a Manhattan 
lattice correspond to a conformal theory with central charge C = - 2  equal 
to that of the O(n) n-vector model in its low-temperature phase for n = 0. 
This suggests that Hamiltonian walks, even on oriented lattices, and dense 
polymers could be in the same universality class. Here we show that this is 
indeed the case. To prove it, we consider a Manhattan lattice, and 
generalize the original single Hamiltonian walk of Kasteleyn to a grand 
canonical set of disconnected Hamiltonian circuits filling the Manhattan 
lattice, with fugacity z. We show that the partition function (with free 
boundary conditions) can be transformed into that of a q-state Potts model 
with ql/2= z, at the Potts critical point. An infinite set of critical exponents 
governing the correlation functions of Hamiltonian circuits with fugacity z, 
corresponding to a set of topologies of the circuits, is thus obtained. 

We show that these exponents are also exactly those of an n-vector 
model in the low-temperature phase, with z = q~/2= n. In the low-fugacity 
limit z = n ~ 0 (a finite number of Hamiltonian circuits), one thus obtains 
the critical exponents of the n = 0 model below To, i.e., dense polymers, (9,m) 
showing directly the identity of universality classes. 

2. M A N H A T T A N  H A M I L T O N I A N  W A L K S  

Consider a Manhattan oriented lattice Jr (Fig. 1). It is the covering 
graph of an oriented underlying square lattice 57, which is here in diagonal 
position (Fig. 1). The edges of the Manhattan lattice are obtained by 
joining the median points of the edges of 57 and orienting them according 
to the orientation of 5 7. Now, as remarked by Kasteleyn, (1) there is a one- 
to-one correspondence between an oriented Hamiltonian path on ~ and 
an oriented Eulerian path on 5 7, i.e., a path that visits each edge of 57 once 
and only once (Fig. 1). We take here free boundary conditions, and the 
possibility of having Hamiltonian circuits on a Manhattan lattice of M x N 
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Fig. 1. The square oriented lattice 5 ~ (diagonal dashed lines) and its covering graph, the 
square Manhattan oriented lattice ./# (horizontal and vertical solid lines). To any oriented 
Hamiltonian walk on ~# (on the upper right) there corresponds an oriented Eulerian walk on 
5 ~. These walks encircle points of an other (unoriented) square lattice 2' (dots) obtained by 
joining the centers of the counterclockwise plaquettes of J/g. 

sites requires then that M and N are even. Let us introduce another square 
lattice 5~ (1) If we put a point in the center of each of  those squares of  lat- 
tice ~ whose sides are counterclockwise oriented, and if we connect all 
pairs of such points that are nearest neighbors by a line, we get (1) the 
unoriented quadratic lattice 5~ (Fig. 1). A similar translated lattice ~ is 
associated with the squares with clockwise orientation (1) (Fig. 1), which 
plays a role for periodic boundary conditions. (1) It is the dual lattice of  ~ .  
Fol lowing Kasteleyn, one sees that a Hamittonian circuit on J/{ encircles, 
in a one-to-one correspondence, a graph on ~ (Fig. 1). 

N o w  let us consider a set of  oriented Hamiltonian circuits that fill 
completely the Manhattan lattice ~ (Fig. 2). We introduce a Hamiltonian 
grand canonical partition function with fugacity z 

z.(z)= Z z'+ (la) 

where the sum is taken over all the possible graphs N made of  JVp oriented 
Hamiltonian circuits filling ~#, with ~ e being summed over. One has also 

ZH(Z): ~ zI<NH, K (lb) 
K i n 1  
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Fig. 2. A set of Hamiltonian circuits filling J//. The skeleton of the circuits spans graphs ~' 
on 5 a, including isolated points, that cover all sites of 2'. The diagonal unoriented square 
lattice is the surrounding lattice 5 ~ of s 

where NH, x is the total number  of configurations of Hamiltonian circuits 
with K connected components. Note that here two Hamiltonian circuits 
can be inside each other (Fig. 2). As we shall see, the enumeration of NH, K 
is a solvable problem. (Another interesting problem consists in counting 
only K Hamil tonian circuits that are adjacent but never inside each other. 
This case has also just been solved (15) and its correlation functions exactly 
catculated.(as)). In Eq. (1) we have introduced a fugacity z for Hamiltonian 
loops. It  must be noted that the standard meaning of Hamiltonian walks 
corresponds to a finite number  of walks that fill the lattice, even in the 
large-lattice limit. In this limit, if z > 0, the average number ( Y p )  of loops 
will become infinite with lattice size. The real Hamiltonian case ( ( Y p )  
finite) will thus correspond to the limit z--+ 0, to be taken at the end, in a 
way quite similar to the usual n = 0 limit of the O(n) model for polymers. 

It is straightforward to check (a) that each Hamiltonian circuit 
configuration N on J/{ encircles an unoriented spanning graph ~' on 2 '  in a 
one-to-one correspondence (Fig. 2). Hence, we may write 

Z H ( z )  = Y ,  z ~ "  (2) 
spanning 

graphs ~" e ,s 

./V e was the number of Hamiltonian circuits (or polygons) of graph ff on 
//r On the square lattice Y', Ar~, can be written in terms of the total 
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numbers ~ of loops and g r  c of connected components (including isolated 
points) of the associated spanning graph (#' as 

x p = ~ + Y c  (3) 

a relation that will be useful later. 

3. P O T T S  M O D E L  

Spanning graphs on Y (Fig. 2) are very reminiscent of the high- 
temperature expansion of the Potts model. <16) Consider then the q-state 
Potts model with Hamiltonian /~H=-f lZ<i , j>6~i~ j, where a i=l , . . . , q  
(integer) and (i, j )  denotes nearest neighbors on the unoriented square 
lattice ~e. The high-temperature expansion of the partition function is then 
given by the Whitney polynomial<16'17): 

Zpotts(q)= ~ e , a  ~ W ( f # , ) = ~  (e ~_  1)o+-~ qXe (4) 

W(f#') is the weight of a graph made of a total number JV~ of bonds and 
X c of connected components, including isolated points. Equation (4) now 
defines a model for any real or complex q. Now, a spanning graph fr on 
can be associated with a polygon decomposition <17) of the surrounding 
lattice 5 e of Y (Figs. 2 and 3). Before being decomposed, the surrounding 

Fig. 3. The same spanning graph f#' on s and the associated polygon decomposition of the 
surrounding lattice Y of s where S~ is the original diagonal lattice 5 7 without the orien- 
tation. 
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lattice 5O of a lattice L r' is defined as follows. (iv) Draw simple polygons 
(here diagonal squares) surrounding each site of 5e such that: no polygons 
overlap, and no polygon surrounds another; polygons of nonadjacent sites 
of 5 ~ have no common corner; polygons of adjacent sites of ~ have one 
and only one common corner. This corner is on (the middle of) the edge 
joining the sites. The corners of the polygons are the sites of 5O. Note that 
here the surrounding lattice 5 ~ is simply the diagonal square lattice and 
coincides with the former underlying square lattice 5 ~ of the Manhattan 
lattice J[ ,  except that 5O is unoriented (Figs. 1-3), while 5 7 is oriented. 
Now, in the polygon decomposition of the surrounding lattice 5O, the rule is 
that some vertices of the surrounding lattice 5O are cut open to let the 
bonds of &o go through unintersected. This also applies to the edges of the 
dual lattice N of ~ .  Note that the resulting polygon configuration appears 
as made of islands supporting the connected pieces of ~9' in lakes where all 
the sites of the dual lattice N of ~ are immersed. 

On the square lattice Lr having a total number of sites sg~ s = MN/4, 
one has (Euler's relation) 

~ = x ~ + ~ c - ~  (5) 

where, as in (3), YL is the number of loops within the clusters of a 
spanning graph f#'. On the surrounding lattice 5O, the total number of 
polygons one can draw around each cluster and in each loop (Fig. 3) is 
given by Ye = YL + Xc,  and is clearly identical with the original number 
(3) of Hamiltonian circuits on J /  (compare Figs. 2 and 3). 

Using Eqs. (3) and (5), one can rewrite Z P o t t s ( q )  in (4) 

Zpotts(q ) = q~S/2 ~ [(e ~ _ 1) q 1/2] ~f'B q~p/2 (6) 

In the infinite-lattice limit the Potts model is critical for q E [-0, 4], (16) and 
its critical point is known by duality on a square lattice to be 

(e ~c- 1) q-1/2 = 1 (6a) 

Hence, at criticality, (6) reduces to 

ZPotts (q) = q~s/2 ~ q~,/2 
critical f~, 

(7) 

Thus, comparing (2) and (7), we obtain 

Zri(z) = qXs/2ZPotts (q) 
critical 

for z = r (8) 
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Hence, Z n and Z P o t t  s c r i t i ca l  are identical, up to a trivial global factor, and 
due to their forms (2) and (7), are the partition functions of a gas of dense 
polygons that do not overlap, but may be inside each other. The identity 
(8) then implies that Hamiltonian circuits (or walks) form a critical system 
in the thermodynamic limit. This is established here for a Manhattan lat- 
tice, but this holds true in general. Therefore, one expects for Hamiltonian 
walks the appearance of nontrivial critical exponents. They will be deter- 
mined in the next section from those of the associated Potts model. 

Let us give a first application. The critical free energy of the Potts 
model is exactly known on the square lattice (~8) in the thermodynamic limit 

f (q ,  tic) = lim In ZPotts (q)/JFs 
JV" s ~ oo c r i t i c a l  

11 + f + ~ 1 7 6  (9) 
= ~  n q  _~ -~  shTtx 

with, for q~<4, cos l~=ql/2/2 and /~e [0, ~/2]. The integral J in (9) is 
analytic in # and its expansion reads, around # = n/2 (q = 0), 

with 

l[+~dx shx  4G 
I~ x/-fiG- 

where G is Catalan's constant, G = 1 - 3-2 .j_ 5 2 -I- "" ", and 

:fo (1 ,)__ 1 
11=--7z  dx cfa x ch 3 2 

~ (, ) o 
I2 = dXs-ff-s ~ = - 2 - - -  

The corresponding expansion in terms of ql/2 is 

J = Io - �89 + ~qI2 + . . .  

From (8) and (9), we find 

lim In ZH(Z)/,/Vs = J 
~ S  ~ oO 
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Identifying the expansion of in ZH(Z ) in ( lb)  with that of j in terms of 
q~/2= z, one finds to first order 

1 G 
~lim~ ~ In NH, 1 =~- (10) 

where 4JV s = MN is the number of sites of J l ,  and the new exact results 

lim 1 NH.2_ 1 
y~-, o~ Ys  NH,~ 4 

lim I (NH, 3 1N22~_ 1 3 

Equation (10) is just Kasteleyn's result, (1) derived here by a different 
method. Further expanding (9) gives in principle NH,K to any order. 

4. SOS,  C O U L O M B  GAS M O D E L S ,  
A N D  CRIT ICAL EXPONENTS 

The polygon decomposition of the surrounding lattice 5~ (Fig. 3) 
allows one to consider Zvotts(q) in (6) and (7) as the partition function of a 
special kind of six-vertex model or solid-on-solid (SOS) model. We state 
the facts we need here and refer the reader to previous work O2'13A9 24) for 
more details. An orientation is assigned to the polygons, after which they 
can be interpreted as steps (of ___re/2) in a configuration of an SOS model. 
(Note that this orientation on 5 ~ will be summed over and is not related to 
the former orientation on the Manhattan lattice ~ ' . )  One introduces height 
variables 0 x at sites X of the lattice ~ and of the dual lattice ~ ,  and an 
oriented polygon on a lattice 5e is considered as a wall between regions of 
constant height, the highest region being on the left of the arrows. The 
Boltzmann weight of an SOS configuration on 5 e is simply the product of 
phase factors e iu (e -;u) for each left (right) turn at one corner of the walls. 
In fact, on a square lattice, the difference between the numbers of left and 
right turns along a polygon with no self-crossing is always +4,  and since 
the polygon orientations in the SOS model are summed over, yielding a 
factor 2 cos 4u for each polygon, one has 

Zsos(U) = ~ (2 cos 4u) Xp 
fq' 

and (at criticality) 

Zvotts (q) = qys/2Zsos(U) 
crit ical 
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provided 2cos4u=q 1/2. Hence, we find also for Hamiltonian circuits 
ZH(z)=Zsos(U) for 2cos 4u=z. The SOS model is driven by renor- 
malization onto a critical Coulomb gas (12'13) with a coupling constant g 
given by (~2,~3) 

q=z2=2+2cos�89 g e [ 2 , 4 ] ,  q e [ 0 , 4 ] ,  z E [ 0 , 2 ]  
(11) 

8u/~ = 12 - g/21 mod 4 

This transformation of the Hamiltonian model or Potts model into six- 
vertex and SOS models also allows one to calculate critical exponents. Let 
us introduce correlation functions (25) for the Hamiltonian model or the 
Potts model 

1 
Gk(X-- Y) = ZPotts(q) ~ W(fr (12) 

where the weight W(~q2) is defined in (4), and where the sum is taken over 
all graphs fq~, of the surrounding lattice ~ formed by k polygons that join a 
neighborhood of a point X to a neighborhood of a point Y (the case k = 3 
is represented in Fig. 4). On the Manhattan lattice Jg, which covers the 
surrounding lattice J ,  Gk is also the correlation function between k 
Hamiltonian circuits (Fig. 5) 

1 
Gk(X-- Y) - Z tz~ ~ z~ (13) 

H~, f ~  k 

Fig. 4. Three polygons correlated at points X and Y, contributing to G 3 ( X -  Y) (here for 
q=0) .  
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Fig. 5. The k =  3 Hamil tonian circuits on ~k' corresponding to Fig. 4 that come close 
together at X and Y and contribute to G3(X-- Y). There are no other circuits on J /  (z = 0). 
For z ~ 0, these three circuits are combined with loops. 

where the sum is over graphs ~k of Jr formed by Hamiltonian circuits 
filling Jr among which (at least) k circuits join X to Y. The other circuits 
of ~fk in general do not join X to Y, but some may occasionally. According 
to the identity (8), the Manhattan correlation function Gk in (13) is iden- 
tical to the Potts one in (12) at the critical point (6a). The critical behavior 
of Gk will be Gk(X--Y)= I X - Y [  2xk where the equality stands up to a 
factor, and where Xk are new universal scaling dimensions characteristic of 
Manhattan circuits and of the Potts model. 

The critical behavior of Gk [Eq. (12)] of the Potts model has been 
recently calculated <25) for the purpose of studying percolation hull 
exponents for q = 1. One uses the SOS model and the method follows and 
generalizes that introduced by den Nijs ~23) for calculating chiral and cubic 
crossover exponents in the Potts model and by Nienhuis and K n o p s  (24) for 
the Potts spinor exponents. In the SOS model, the polygons are arbitrarily 
oriented. For  taking into account the correlation of k polygons between X 
and Y, one modifies the orientation of some parts of these polygons 
between Y and Y in such a way that one circulates only from Y to Y 
(Fig. 6). <23 25) Then X is a source of 2k lines and Y their sink. In terms of 
the heights of the SOS model, the resulting configuration cg), corresponds 
to a screw dislocation between X and Y. Along a closed path around 
vortex X (Y), described on the trigonometric direction, the SOS height 
varies by 2kxrc/2=krc (-kn). These vortices c o r r e s p o n d  (23'24) in the 
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Fig. 6. The modification of orientation of the lines of the polygons joining X to Y. One 
creates a source at X and a sink at K Since k = 3, one cannot  accommodate  on a discrete 
square lattice three polygons touching each other, so the rupture of orientation occurs only in 
neighboring points. When one circulates around X (Y) (double arrow) on a large enough path 
that encloses the orientation breaking points, the number  of dislocation steps is + 6 ( - 6 ) .  

Coulomb gas model to a magnetic charge or vorticity m x =  - m y = k / 2 .  
Next one has to take care of the proper phase rule in the SOS model. For 
instance, (24) if one winds the extremity of one of the polygons around Y, 
say, as represented in Fig. 7 (inspired by Ref. 24), the Boltzmann weight in 
the SOS model changes by a phase factor, since the two oriented sections 
of the polygon contribute oppositely to the winding number. For  each left 
(right) full turn of the two lines one gets a factor e 8tu (or e -Siu) in the SOS 
weight, with respect to the weight without winding. But since the left 
(right) rotation moves the height O r at Y by 2 x ~/2 = rc ( - ~ ) ,  this phase 
factor can be repaired by multiplying the SOS weight Wsos(C~;) by a spin- 
wave operator exp(ieyOy), where e y = - S u / r c .  A similar operator 
exp(iexOx) has to be introduced at X, with ex = ey. Hence we write (2s) 

ak(X__ y)  ~ .  [ZPott s (q)] -1 ~ Wsos(Cg~) exp[ i (exOx+ eyOy)] 
critical ~ 

where e x and e r  are two electric charges e x = e y = - 8 u / r c = - 1 g / 2 - 2 1  
mod 4. The Gk appears (2s) as the correlation function of two combinations 
of vortex and spin wave with respective magnetic and electric charges 
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X" "\Y\ 

Fig. 7. A dislocation (dashed line) in the case of a k = 1 polygon (in the continuum limit). 
When the polygon winds around Y, new curvature factors arise. Here, the upper arrow turns 
by -3~z, the lower one by -~ ,  resulting in -4~. The height at Y along a path ~ is lowered 
by z/0y= -~. The weight Wso s exp[-i(8u/r~)0y] is then left invariant. 

(rex, ex) = (k/2, g/2 - 2) 
criticality like 

and (mr, e r ) = ( - k / 2 ,  g / 2 - 2 ) .  It  decays at 

G k ( X -  Y)= I X -  rl 2xk (14) 

with a critical exponent  given by the den Nijs-Nienhuis  Cou lomb  gas 
formula (12,13) 

g 1 g['k'~ 2 ( 4 - g )  2 
(15) Xk= - - 2 m x m r - - ~ g e x e r = - 2  ~-2) 8g 

This result (25) is valid for any value of q, q E [0, 4] ,  with g e [2, 4] ,  and 
thus gives the critical decay of the k-Hamil tonian  circuit correlat ion 
functions (13) in the presence of  a fugacity z, z e [0, 2],  with the correspon- 
dence (11 ). 

For  k = 1, G1 corresponds to the correlat ion between two points of a 
single po lygon  or, on the M a n h a t t a n  lattice, of a single Hamil tonian  circuit 
immersed inside a grand canonical  set of Hamil tonian  circuits. Its critical 
exponent  is then 

xl = 1 - 2 / g  

Note  that  for a true Hamil tonian  circuit filling the lattice, q = 0, z = 0, and 
g = 2 .  Hence X l = 0 .  This is expected, since G I ( X - Y )  is the probabil i ty 
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that two points of the lattice belong to the same circuit, i.e., G1 = 1, in the 
absence of any other loop. 

Using standard scaling arguments, one can show that x~ is related to 
the fractal dimension D of a large Hamiltonian circuit by ~25~ 

D = 2 - x l  = 1 + 2 / g  

This fractal dimension then varies from the upper bound D = 2 for g = 2, 
q = 0 ,  z = 0  (true Hamiltonian circuit) to the lower bound D =  3/2 for 
g = 4, q = 4, z = 2 ( X Y  model at the Kosterlitz-Thouless point). The fractal 
dimension D = 2 for a true Hamiltonian path is naturally required for a 
path filling a 2D lattice. It is also interesting to note that q = 1 ( g =  8/3) is 
the percolation problem <26) and corresponds to z = 1 in the Hamiltonian 
problem. This reduces in (1) to a sum over all possible nonconnected 
closed paths visiting all sites of ~ '  once and only once. Then the fractal 
dimension of a typical Hamiltonian circuit is D = 7/4 and is identical to the 
hull fractal dimension of a percolation cluster, which has been recently 
derived.~25) 

5. O(n) M O D E L  

Let us show that the critical exponents (15) are equivalently those of 
the O(n) model, n E [0, 2], in its low-temperature phase, which is also 
critical. r On a hexagonal lattice ~ ,  an O(n) model is defined by the 
partition function ~3) 

Zo,,,,:iHds; I1 r 
(J J) 

where i, j, I are lattice sites, ( j ,  l )  denotes nearest neighbors, and S is an 
n-component vector with ISI2= n. It is well known ~27'28) that Zorn) can be 
written as a sum over all diagrams consisting of closed and nonintersecting 
rings on the honeycomb lattice Jr 

Zoo , )=  ~ fiSBnW" (16) 
graphs 

where Jff~ is the total number of bonds of the rings, i.e., their length, and 
their number. 
Now, comparing expansion (16) with the former expansions (1) and 

(2) of ZR(z )  and (7) of ZPottscritica~(q) immediately suggests that these 
partition functions correspond in (16) to fl = 1 and 

n = ql/2 = z (17) 



424 Duplantier 

As is intuitively obvious, the loop fugacity z in the Manhattan problem is 
also the loop fugacity n in the O(n) model. Now, on a hexagonal lattice the 
critical point is known (13) exactly to be f lc=[2+(2-n)m] -~/2, nm 
[ - 2 ,  2]. Hence tic< 1 for any n and thus fi= 1 in (16) corresponds to the 
critical low-temperature phase fl > tic of the O(n) model. One might argue 
that in (1) and (7) the Hamiltonian circuits or the polygons fill the lattice, 
while in (16) loops filling the lattice occur for fl-~ 0% i.e., at T=0.  The 
whole low-temperature phase of the O(n) model actually has the same 
critical properties. (13) In the critical domain the O(n) model (16) for n~ 
[ - 2 ,  2] can be transformed ~3) into a Coulomb gas having a renormalized 
coupling constant g' such that 

n = --2 cos ~zg' 

The analytic determination of g' is 

g'm [1,23 

(18a) 

(18b) 

for the critical point fl= tic. According to Nienhuis, (~3) the critical low- 
temperature phase corresponds to the other analytic determination 

g'~ [0, 1] (18c) 

Due to (11) and (18) we see that Eq. (17) holds for 

g'=�88 (19) 

Hence the Potts critical model with g~ [2, 4] and q~ [0, 4] should corre- 
spond to the critical low-temperature phase of an O(n) model with 
g '6[ �89  n ~ [ 0 , 2 ] .  (Note that a similar correspondence exists (29) 
between the Potts tricriticaI model for which g~ [4, 6] and q~ [0, 4] and 
the critical point of the O(n) model g' ~ [1, 3/2] and n e [0, 2].) 

Let us establish the identity of Potts and O(n) critical exponents for 
(17) and (19). We consider the totally connected correlation function of the 
type 

Go(,),k(X-- Y) 

=(Sil"Si2,...,Si2k l'Si2k, Sjl'Sj2,...,Sj2k l ' S j 2 k ) t o t a l  . . . .  (20) 

where i~,..., i2~ denote 2k points in the neighborhood of X, and j~,..., J2~ 
denote 2k points in the neighborhood of Y; X and Y are mutually remote 
(Fig. 8). Since we want to reproduce a correlation function similar to the 
polygon correlation function G~ of (12) and (13), we select only diagrams 
in the high-temperature expansion of the O(n) model where the 2k lines 
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Fig. 8. A typical diagram contributing to Go(n),k(X--Y) (here for n=0 and k= 3). The 
configuration has been chosen to be quite similar to that represented in Figs. 4 and 5, but 
the paths no longer fill the lattice completely, and the Manhattan orientation is lost. The 
universality class is nevertheless the same. 

emerging from Z actually go to Y and do not close onto themselves. 
[Thus, Go~n),k is not the simply connected correlation function of the O(n) 
model.]  Another way to obtain it would be to attribute different com- 
ponent indices to the 2k vectors S at X related in a one-to-one correspon- 
dence to the 2k vector indices at Y. The critical behavior of Go(n),k can then 
be calculated ~13'3~ by transforming (13) the O(n) model into a particular 
SOS model (the triangular SOS model) and a Coulomb gas. Heights Ox are 
attributed to the centers of the hexagons on the dual triangular lattice, 
which vary by steps of _+ re. Then oriented closed rings or polygons on the 
hexagonal lattice ~ represents domain walls between regions of constant 
heights, the higher one being on the left of each arrow. The TSOS weight is 
simply obtained as a product of factors fie iu (fie iu) for each left (right) 
turn on the hexagonal lattice W resulting for a non-self-intersecting left 
(right) ring on 3r into a global term flWe6i" (flYe-6~u), where dff is the 
number  of bonds of the ring. Then, by summing over independent orien- 
tations of the polygons, one sees (13) that ZTsos = Zo(n) [Eq. (16)] for 

n = 2 c o s  6u, 6u / l r= j l -g ' [mod2  (21) 

For calculating Go(m,k(X-- Y) of (20), one proceeds (13'3~ in a way similar 
to that used for the Potts model. One modifies in the TSOS model the 
orientation of some lines of the k polygons joining X to Y in such a way 
that one circulates only from X to Y. Then (S- S')k(X) acts as a source of 

822/49/3-4-2 
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2k domain walls and Y as a sink. There is thus a dislocation between X 
and Y, with step 2kn ( - 2 k n )  around X(Y) .  

This corresponds ~13'3~ in the Coulomb gas to magnetic charges mx = 
- m r  = k. As above, new curvature effects appear ~3) when a dislocation is 
present in the TSOS model. They are repaired ~3'3~ by a spin-wave 
operator exp [i(exOx + e r 0 v) ] with electric charge 

ex= er=  -(6u/re) mod 2 

Taking the lowest electric charges in order to obtain the dominant critical 
behavior, one has 

ex= e r  = 1 - g' 

Hence Go~n),k has the critical behavior 

Go~,,).k = I X -  Y1-2x~k 

with 

, g 1 g' k2 1 g,)2 x2k = - ~  m x m r - ~ g  e xe r= 2 - - ~  ( 1 -  (22) 

We check that for ' -  ~ q~/2= g - z g ,  n, the Potts exponents xk in (15) and the 
O(n), T< T c exponents x~k in (22) are identical. Q.E.D. 

It is also interesting to calculate the central charge C of the associated 
conformally invariant theory/3~) For  the Potts and O(n) models, we use 
the Coulomb gas representation ~31'32) 

Cq = 1 - 3(4 - g)Z/2g, Co~,) = 1 - 6(1 - g,)2/g, (23) 

the latter being valid both for f l=flc  and f l>flc.  From (19) we get, as 
expected, Cq=Co~,) for q~/2=n. For the Hamiltonian fugacity z =  
n ~ [0, 2], g '~  1-�89 1 ], one thus has a central charge C ~ [ - 2 ,  1 ]. The value 
C =  - 2  corresponds ~9) to usual Hamiltonian walks and dense polymers, 
and C = 1 (free field) to the X Y  model (q = 4 Potts model). 

The critical exponents xk [-Eq. (15)] =x~k [-Eq. (22)] also belong to 
the Kac table of the associated conformal theory. ~ With the usual 
parametrization~31) 

6 (24) hpq= [ ( m +  1)p- -mq]  2 -  1 C= 1 re(m+ 1) 
' 4m(m + I) ' 

we find, using (15) or (22), and (23) 

xk=x~k=2ho.~ (25) 

with the identification m = g / ( 4 - g ) = g ' / ( 1 - g ' ) .  Thus, the conformal 
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parameter  m takes the values m e [ 1, ~ [-, m = 1 corresponding to dense 
polymers and Hamiltonian walks, m = ~ to the X Y  model. 

6. q, n = 0  LIMIT 

Of special interest is the zero-fugacity limit z, q, n --* 0. It  corresponds, 
on an infinite lattice, to a finite number  of Hamil tonian paths filling the 
Manhat tan  lattice, i.e., to the usual Hamiltonian problem. The associated 
q ~ 0 limit of the Potts model also describes spanning trees/34) and the 
Kirchhoff problemJ 35) The n ~ 0  limit (for T<Tc) describes dense 
polymers. ~9't~ All these models are in the same universality class. 

The correlation function G ~ ( X - Y )  in (13) then corresponds to k 
Manhat tan  Hamiltonian circuits connecting X to Y (Fig. 5). Since z = 0, 
there are no other circuits on//~.  Their internal skeletons thus build k span- 
ning trees on the square lattice Lf. 

In the z = q~/2= n ~ 0 limit, the critical exponents (15) read 

xk = �88 2 - 1) (26) 

and are the exact critical exponents of Hamil tonian circuits on a 2D 
Manhat tan  lattice. But they are also those obtained ~9) for simple dense 
polymers from the n = 0 vector model at T <  Te. We found the exponents 

, (L2_4) /16  X L  ~-- 

governing the critical decay of the correlation function of L linear dense 
polymers tied together at their extremities. On a Manhat tan  lattice, k cir- 
cuits joining X to Y (Fig. 5) are actually L = 2k polymers between X, and 
Y, and indeed x~=x'zk. The Manhat tan  orientation only prevents the 
accommodat ion of an odd number  of linear Hamiltonian walks. 

The universality class of Hamiltonian walks and of dense polymers is 
thus unique. The constraint of completely filling a lattice, and here the 
special Manhat tan  orientation, are irrelevant in the infrared, i.e., the critical 
large-distance limit. 

We have shown here the universality of exponent xk. From these basic 
scaling dimensions, one can calculate other critical exponents, such as the 7 
exponent of any branched polymer with fixed topology {9'14) and contact 
exponents ~36) of a (dense or dilute) SAW. Hence the universality of 
Hamiltonian walks will also hold for these exponents. 

7. S U R F A C E  E X P O N E N T S  

Besides bulk critical exponents, there are also surface critical 
exponents, ~37'38) which play a role when one looks at the properties of the 
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critical System near a surface or near the boundaries. In the case of 
Hamiltonian walks or dense polymers, these surface effects will correspond 
to parts of the polymers located near the boundary surface. One could 
object rightly that a single Hamiltonian walk or circuit, in the case of free 
boundary conditions, always visits the surface and this should correspond 
to no new effect. However, when one looks at a correlation of k circuits 
near the surface for k > 1, one expects new critical exponents. For dilute 
polymers, we have studied (39) the surface exponents x s corresponding to a 
vertex of L polymer lines tied near a surface. This was done with a transfer 
matrix study on lattice strips with free boundary conditions. In the 
continuum limit, this corresponds (38) to Dirichlet boundary conditions, i.e., 
to the ordinary surface transition./37'4~ The correlation function (20) 
generalized to two points X and Y near the surface line and L spins then 
has the surface critical behavior 

6~,(.),L(x- r ) =  I x -  YI 2x,~ (27) 

(Note that L is 2k for k polygons.) We found (39) by identification the 
values 

xS=hL+l,1 (fl=flc) (28) 

where hp,q is given by Kac formula (24) for (39) n = 0, m = 2, C =  0 (dilute 
polymers). Actually, this formula, properly interpreted, holds for the sur- 
face exponents of the O(n) model at the critical point tic for n e  [ - 2 ,  2]. 
It suffices to parametrize the conformal parameter m in (24) by 
(m + 1)/m = g', where g' is the former Coulomb gas coupling constant 
(18a) of the O(n) model for the critical point (18b). Hence, one finds from 
(24) and (28) 

x s = �88 g 'L 2 + �89 - 1) (29) 

This Coulombic formula now holds also for the other analytic deter- 
mination (18c) of g', corresponding to the low-temperature phase. The 
associated parameter m in conformal invariance is then given by 
m / ( m+ 1)= g', and (29) reads 

xSr=hl,L+l (fl>flc) (30) 

in the dense phase of the O(n) model. [-This permutation of Kac indices in 
hp,q--Compare with (28)--is a general feature when going from the critical 
point ilc to the low-temperature phase fl > tic-] 

Now, consider the correlation functions G s ( x  - Y) of k Hamiltonian 
circuits between two points X and Y close to the boundary of the Manhat- 
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tan lattice. By the same method as before, we can write these correlation 
functions as those of k polygons in the Potts model. The surface critical 
exponents associated with the Coulomb gas representation (11) of the 
Potts model will then be equal to the surface exponents (29) of the low- 
temperature phase of the O(n) model by the same universality rule. Hence, 
their expression in the Potts model is simply 

s _ 1  2 � 8 8  (31) X2k -- ~ gk + 

which coincides with (29) for 2k = L and g '= �88 [Eq. (19)]. 
Let us consider now the true Hamiltonian walks on Manhat tan,  i.e., 

the limit z = qi/2= n = 0, with g = 2, g ' =  1/2. We find from (29) or (31) the 
surface exponents 

xSk = �89 - 1 ) (32) 

The corresponding dense polymer surface exponents for L chains, L not 
necessarily even, are XL s = ( L / 8 ) ( L -  2), and are studied in dethil in Ref. 11 
along with the various surface critical exponents derived from them. In 
(28), the case L = 2, k = 1 corresponds to the correlations of two surface 
points of a single polygon. We find from (32) that x s = 0, as in the bulk 
xl = x~ = 0. Hence, there is no difference for the points of a polygon or of a 
Hamiltonian circuit to be inside the lattice or at the borderline, as 
expected. But for k > 1, the nontrivial surface exponents (32) appear. 

8. H A M I L T O N I A N  C O N D E N S A T I O N  

On may wonder what happens above z = n = 2, q = 4, i.e., at higher 
fugacities for Hamiltonian walks. For  q > 4, the Potts model has a first- 
order transition. (18) The O(n) model for n > 2  has a zero critical tem- 
perature. The identification of Hamiltonian circuits with a Potts model still 
holds at the special point (6a), which is the critical point for q ~ [0, 4]. For 
q > 4  it corresponds to the Potts first transition line. At this first-order 
transition point, the correlations are short range with an exponential decay. 
This corresponds to the condensation of Hamil tonian circuits into a liquid 
of small loops for z > 2, which are no longer critical. Above q = 4, the Ports 
free energy at the critical temperature T~ is given by another analytic 
expression, (18) different from (9) for q ~< 4, but continuously related to it by 
an essential singularity. 

9. C O N C L U S I O N  

We have considered the particular case of Hamiltonian walks on a 
Manhat tan  lattice. Given Kasteleyn's solution for a single Hamiltonian 
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walk on a M a n h a t t a n  torus, one could have concluded that this system is 
simple and  too peculiar to be of general interest. We showed here that  the 
grand canonical  M a n h a t t a n  walks are in fact a representat ion of a critical 

Potts  model  (with free b o u n d a r y  condit ions) .  This first shows that  
M a n h a t t a n  walks form a critical system. Moreover,  since then Potts  critical 

exponents  so derived are also those of an O(n)  model  in two dimensions  

below Tc, the universal i ty is ensured. Both the M a n h a t t a n  or ien ta t ion  and  
even the H a m i l t o n i a n  cons t ra in t  are irrelevant. The existence of these iden- 

tifications was possible thanks  to the l~eculiar geometry of the M a n h a t t a n  

lattice. This, of course, is no t  sufficient to conclude that  for all lattices, 

Hami l t on i an  walks will be universal.  But there is a serious hope for most  of 
them. Fur the r  studies on other lattices would be interesting. 
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